ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Eliseo Visca, Enrico Di Pietro, Giancarlo Ceccotti, Giovanni Mercurio
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 689-693
Divertor Design and Experiments | doi.org/10.13182/FST96-A11963016
Articles are hosted by Taylor and Francis Online.
The design of plasma-facing components for ITER, as for any of the envisaged next-step machines, relies on the use of junctions for coupling the armour materials to the heat sink and cooling tubes. A suitable diffusion bonding process for manufacturing the high heat flux components of ITER have been developed. The process parameters for defining the bonding technology are reported. The dependence of the load applied on the sample, the bonding temperature, dwell time and surface preparation were studied and the results applied in the construction of the mockups. Results of the shear tests performed to define the process parameters for different heat sink materials, such as CuCrZr alloy and DS copper, are reported. The S65 beryllium grade used (supplied by Brush and Wellman) had cubic and castellated finishing to increase its high heat flux resistance. A shear strength of about 150 MPa was obtained by using an interlayer of electrolytic copper deposited on the activated beryllium surface. This electrolytic deposition method gave good results and reproducibility so it was decided to use copper as interlayer in order to obtain a silver-free joint. After selecting the best process, medium-scale mockups of high heat flux components for testing on the electron beam facility were manufactured. The actively cooled mockups had a 50×30×8mm beryllium armour (castellated and non-castellated), with two kinds of heat sink material (Glidcop A125 and CuCrZr alloy). Both the samples produced for the shear tests as well as the mockups have been submitted to ultrasonic inspection to detect bonding defects.