ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
N. J. Zhan, M. D. Carelli, L. Green
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 680-688
Divertor Design and Experiments | doi.org/10.13182/FST96-A11963015
Articles are hosted by Taylor and Francis Online.
The performance of the current design of the ITER divertor cooling system is examined. Various combinations of the plasma facing components in series and/or in parallel are studied and the most suitable cooling scheme is selected in terms of the pumping power, the overall pressure drop, the coolant temperature rise, and the coolant flow rate. The proposed scheme not only meets all the requirements for an acceptable hydraulic arrangement, but also requires over 25% less pumping power than the Joint Central Team (JCT) current design.