ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
Ying T. Lee, Myron A. Hoffman, M. Hafez
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 669-673
Divertor Design and Experiments | doi.org/10.13182/FST96-A11963013
Articles are hosted by Taylor and Francis Online.
A subcooled nucleate boiling computer code (with 3D heat conduction in solid and 1D forced convection in fluid) that incorporates a good estimation of the single-phase and two-phase pressure drop was developed to evaluate a monoblock design of the divertor with smooth tubes as well as a wide variety of cooling designs. Using one of the monoblock divertor designs proposed by the European International Thermonuclear Experimental Reactor (ITER) team as of March 1995, it was found that under a normal steady state operating condition with a peak heat flux of about 5 MW/m2, the water flow remained in the single phase liquid regime. Under an abnormal operating condition with a peak heat flux of about 20 MW/m2, the partially developed boiling (PDB) regime occurred where the local critical heat flux safety factor, (SFCHF=CHF(z)/q“(0=0°)), was estimated to be about 1.4 using the Tong-75 CHF correlation. This indicates that further increases in the magnitude of the heat flux beyond 20 MW/m2 may raise safety concerns for the design. By increasing the mass flux, decreasing the inlet water temperature, or increasing the inlet water pressure, the CHF safety margin of the design can be increased without inserting twisted tapes inside cooling tubes.