ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Charles E. Ahlfeld, David A. Dilling, Kazuyuki Ishimoto, Susan Stoner, Eiichi Tanaka
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 611-617
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST96-A11963006
Articles are hosted by Taylor and Francis Online.
The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIATM database provide the framework for the equipment layout.
This paper describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA™ models.
Accommodating the initial assembly and major maintenance (disassembly) scenarios of the tokamak significantly influenced the design solutions selected. Major maintenance considerations also provide conceptual feasibility for decommissioning activities. Equipment access and removal pathways for all equipment that must be replaceable have been provided in the buildings for both non-radioactive and radioactive or contaminated components.
Extensive shielding studies have led to inherent and engineered protective measures for workers and equipment. Building ventilation systems are designed such that contaminated atmospheres may be isolated, recirculated, filtered and detritiated, with ultimate release through a tall exhaust stack.
Because the ITER site may not be known before 1998, the building and equipment designs have been configured so they can be adapted to potentially more demanding site-specific conditions such as higher seismicity, winds, aircraft impact and extreme low temperatures without requiring major redesign. A solid starting point for the detailed design work that must be completed in the next two years has been established. Continued collaboration between the ITER Joint Central Team and the Four Party Home Teams will provide the fully integrated engineering design for future decisions on the construction of ITER.