ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Post, T. Ando, A. Antipenkov, S. Chiocchio, J. Dietz, G. Federici, M. Gouge, Yu. Igitkhanov, G. Janeschitz, A. Kukushkin, P. Ladd, J. Mandrekas, E. Martin, D. Mitin, H. Nakamura, H. Pacher, W. Stacey, M. Sugihara, R. Tivey
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 594-600
International Thermonuclear Experimental Reactor | doi.org/10.13182/FST96-A11963003
Articles are hosted by Taylor and Francis Online.
The ITER power and particle control system is designed to exhaust the 300 to 400 MW of alpha and auxiliary heating power and the 5 × 1020 He atoms per second created by the fusion reactions, to control the density and to fuel the plasma. The power and particle control system consists of a single null poloidal divertor, a set of active pumps with a total pumping speed of ~ 200 m3/s, and gas puffing and pellet fuelling systems. Atomic processes are used to spread out the heating power over the first wall and divertor walls, thereby reducing the peak heat loads on the divertor plates to acceptable levels. The divertor has a “vertical target” plate configuration and tight baffling to maximize the effectiveness of the atomic processes for energy losses in the divertor and to maximize the neutral pressure in the divertor and minimize the backflow of neutrals from the divertor to the main chamber.