ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dennis J. Strickler, Steven P. Hirshman, Donald A. Spong, Michael J. Cole, James F. Lyon, Bradley E. Nelson, David E. Williamson, Andrew S. Ware
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 15-26
Technical Paper | doi.org/10.13182/FST04-A421
Articles are hosted by Taylor and Francis Online.
A compact quasi-poloidally symmetric stellarator (QPS) plasma and coil configuration is described that has desirable physics properties and engineering feasibility with a very low aspect ratio plasma bounded by good magnetic flux surfaces both in vacuum and at <> = 2%. The plasma is robust with respect to variations of pressure and the resulting bootstrap current, which leave the bounding flux surface approximately unchanged and thus reduce active positional control requirements. This configuration was developed by reconfiguring the QPS modular coils and applying a new computational method that maximizes the volume of good (integrable) vacuum flux surfaces as a measure of robustness. The stellarator plasma and coil design code STELLOPT is used to vary the coil geometry to determine the plasma geometry and profiles that optimize plasma performance with respect to neoclassical transport, infinite-n ballooning stability up to <> = 2%, and coil engineering parameters. The normal component of the vacuum magnetic field is simultaneously minimized at the full-beta plasma boundary.