ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Dennis J. Strickler, Steven P. Hirshman, Donald A. Spong, Michael J. Cole, James F. Lyon, Bradley E. Nelson, David E. Williamson, Andrew S. Ware
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 15-26
Technical Paper | doi.org/10.13182/FST04-A421
Articles are hosted by Taylor and Francis Online.
A compact quasi-poloidally symmetric stellarator (QPS) plasma and coil configuration is described that has desirable physics properties and engineering feasibility with a very low aspect ratio plasma bounded by good magnetic flux surfaces both in vacuum and at <> = 2%. The plasma is robust with respect to variations of pressure and the resulting bootstrap current, which leave the bounding flux surface approximately unchanged and thus reduce active positional control requirements. This configuration was developed by reconfiguring the QPS modular coils and applying a new computational method that maximizes the volume of good (integrable) vacuum flux surfaces as a measure of robustness. The stellarator plasma and coil design code STELLOPT is used to vary the coil geometry to determine the plasma geometry and profiles that optimize plasma performance with respect to neoclassical transport, infinite-n ballooning stability up to <> = 2%, and coil engineering parameters. The normal component of the vacuum magnetic field is simultaneously minimized at the full-beta plasma boundary.