ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. M. Soures, S. J. Loucks, R. L. McCrory, C. P. Verdon, A. Babushkin, R. E. Bahr, T. R. Boehly, R. Boni, D. K. Bradley, D. L. Brown, J. A. Delettrez, R. S. Craxton, W. R. Donaldson, R. Epstein, R. Gram, D. R. Harding, P. A. Jaanimagi, S. D. Jacobs, K. Kearney, R. L. Keck, J. H. Kelly, T. J. Kessler, R. L. Kremens, J. P. Knauer, S. A. Letzring, D. J. Lonobile, L. D. Lund, F. J. Marshall, P. W. McKenty, D. D. Meyerhofer, S. F. B. Morse, A. Okishev, S. Papernov, G. Pien, W. Seka, R. W. Short, M. D. Skeldon, S. Skupsky, A. W. Schmid, D. J. Smith, S. Swales, M. Wittman, B. Yaakobi, M. J. Shoup, III
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 492-496
National Ignition Facility | doi.org/10.13182/FST96-A11962988
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF.