ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G.J. Laughon, K.R. Schultz
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 471-474
National Ignition Facility | doi.org/10.13182/FST96-A11962985
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF), proposed by the Office of Inertial Confinement Fusion (ICF), will be used to demonstrate fusion ignition in a laboratory environment (1). The primary mission of NIF will be to support U.S. DOE Defense Programs. The facilities' secondary mission will be to support development of inertial fusion as a potential fusion energy source for civilian use (2). Target insertion is one of the technical issues which will need to be addressed before inertial fusion can become a practical energy source, and is one of the issues that can be investigated by experiments on the NIF.
Target insertion systems currently utilized at existing ICF facilities consist of mechanisms inside the target chamber to insert, position, and hold the target at the chamber center. These are not suitable for multiple shots in quick succession, as needed for energy applications. A study was performed to investigate various new techniques for target insertion in NIF.
Insertion concepts involving free-falling and artificially accelerated targets were developed and evaluated against a set of predetermined guidelines. Fixed structure holding systems were not considered due to the destructive environment at the chamber center. Conclusions drawn by the author suggest a system involving a fast retraction positioner would be suitable. A target would be positioned in a holder attached to a moveable arm. The holder is moved to a position slightly above the chamber center. The target is dropped and the holder/arm assembly is quickly retracted to avoid ablation effects. To improve target accuracy, a release system imparting near-zero torque and augmenting the target with additional mass to reduce drag effects would be employed. A plan illustrating a reasonable continuation of the project, leading ultimately to tests in NIF, is also presented.