ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Tobin, V. Karpenko, A. Burnham, R. Peterson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 457-463
National Ignition Facility | doi.org/10.13182/FST96-A11962983
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) will be configured in its baseline design to achieve ignition and gain using the indirect drive approach. However, the NIF primary criteria and functional requirements require the NIF design “to not preclude” the ability to conduct inertial confinement fusion experiments using the direct drive approach.
The direct drive approach requires symmetrical illumination of an inertial confinement fusion (ICF) capsule where each beam fully subtends the capsule. Therefore, the re-directing of 24 of the 48 NIF beamlines (each consisting of a 2 × 2 beamlet group) from ~30° and ~50° cone angles to ~75° cone angles located near the chamber ‘equator’ is required. This would be accomplished by adjusting intermediate transport mirrors such that the beams would intercept different final mirrors in the Target Bay and be directed into final optics assemblies attached to the chamber at the new port locations. Allowing space to be able to convert from one irradiation scheme to another while fully meeting the mechanical stability requirements for each approach is a significant challenge. Additionally, NIF user needs (features supporting weapons physics, weapons effects, inertial fusion energy, or Basic Energy Sciences) cannot be compromised by direct drive needs.
The target for direct drive, absent a hohlraum, emits much fewer cold x rays than in the indirect drive case. Further, the irradiation scheme, by its nature, may not result in the absorption of all of the 3ω light and therefore could create a unique hazard to the NIF chamber first wall of significant fluences of scattered UV laser light. This paper describes possible design features of the NIF Target Area to allow conversion to a direct drive capability, and discusses some of the differences in post-shot conditions created compared to indirect drive.