ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. Tobin, V. Karpenko, A. Burnham, R. Peterson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 457-463
National Ignition Facility | doi.org/10.13182/FST96-A11962983
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) will be configured in its baseline design to achieve ignition and gain using the indirect drive approach. However, the NIF primary criteria and functional requirements require the NIF design “to not preclude” the ability to conduct inertial confinement fusion experiments using the direct drive approach.
The direct drive approach requires symmetrical illumination of an inertial confinement fusion (ICF) capsule where each beam fully subtends the capsule. Therefore, the re-directing of 24 of the 48 NIF beamlines (each consisting of a 2 × 2 beamlet group) from ~30° and ~50° cone angles to ~75° cone angles located near the chamber ‘equator’ is required. This would be accomplished by adjusting intermediate transport mirrors such that the beams would intercept different final mirrors in the Target Bay and be directed into final optics assemblies attached to the chamber at the new port locations. Allowing space to be able to convert from one irradiation scheme to another while fully meeting the mechanical stability requirements for each approach is a significant challenge. Additionally, NIF user needs (features supporting weapons physics, weapons effects, inertial fusion energy, or Basic Energy Sciences) cannot be compromised by direct drive needs.
The target for direct drive, absent a hohlraum, emits much fewer cold x rays than in the indirect drive case. Further, the irradiation scheme, by its nature, may not result in the absorption of all of the 3ω light and therefore could create a unique hazard to the NIF chamber first wall of significant fluences of scattered UV laser light. This paper describes possible design features of the NIF Target Area to allow conversion to a direct drive capability, and discusses some of the differences in post-shot conditions created compared to indirect drive.