ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. G. Shats, J. H. Harris, J. B. Wilgen, L. R. Baylor, J. D. Bell, C. H. Ma, M. Murakami, T. S. Bigelow, G. L. Bell, R. J. Colchin, R. A. Dory, J. L. Dunlap, G. R. Dyer, A. C. England, G. R. Hanson, D. P. Hutchinson, R. C. Isler, T. C. Jernigan, R. A. Langley, D. K. Lee, J. F. Lyon, A. L. Quails, D. A. Rasmussen, R. K. Richards, M. J. Saltmarsh, J. E. Simpkins, K. L. Vander Sluis, K. M. Likin, K. A Sarksyan, S. C. Aceto, J. J. Zielinski
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 481-484
Confinement and Transport Studies | doi.org/10.13182/FST95-A11947133
Articles are hosted by Taylor and Francis Online.
Density fluctuations in low-collisionality, low-beta (β ~ 0.1%), currentless plasmas produced with electron cyclotron heating (ECH) in the Advanced Toroidal Facility (ATF) torsatron have been studied using a 2-mm microwave scattering diagnostic. Pulsed gas puffing is used to produce transient steepening of the density profile from its typically flat shape; this leads to growth in the density fluctuations when the temperature and density gradients both point in the same direction in the confinement region. The wave number spectra of the fluctuations that appear during this perturbation have a maximum at higher k⊥ρ, (~1) than is typically seen in tokamaks. The in-out asymmetry of the fluctuations along the major radius correlates with the distribution of confined trapped particles expected for the ATF magnetic field geometry. During the perturbation, the relative level of the density fluctuations in the confinement region (integrated over normalized minor radii p from 0.5 to 0.85) increases from ñ/n ~ 1% when the density profile is flat to ñ/n ~ 3% when the density profile is steepened. These observations are in qualitative agreement with theoretical expectations for helical dissipative trapped-electron modes (DTEMs), which are drift-wave instabilities associated with particle trapping in the helical stellarator field.