ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. G. Shats, J. H. Harris, J. B. Wilgen, L. R. Baylor, J. D. Bell, C. H. Ma, M. Murakami, T. S. Bigelow, G. L. Bell, R. J. Colchin, R. A. Dory, J. L. Dunlap, G. R. Dyer, A. C. England, G. R. Hanson, D. P. Hutchinson, R. C. Isler, T. C. Jernigan, R. A. Langley, D. K. Lee, J. F. Lyon, A. L. Quails, D. A. Rasmussen, R. K. Richards, M. J. Saltmarsh, J. E. Simpkins, K. L. Vander Sluis, K. M. Likin, K. A Sarksyan, S. C. Aceto, J. J. Zielinski
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 481-484
Confinement and Transport Studies | doi.org/10.13182/FST95-A11947133
Articles are hosted by Taylor and Francis Online.
Density fluctuations in low-collisionality, low-beta (β ~ 0.1%), currentless plasmas produced with electron cyclotron heating (ECH) in the Advanced Toroidal Facility (ATF) torsatron have been studied using a 2-mm microwave scattering diagnostic. Pulsed gas puffing is used to produce transient steepening of the density profile from its typically flat shape; this leads to growth in the density fluctuations when the temperature and density gradients both point in the same direction in the confinement region. The wave number spectra of the fluctuations that appear during this perturbation have a maximum at higher k⊥ρ, (~1) than is typically seen in tokamaks. The in-out asymmetry of the fluctuations along the major radius correlates with the distribution of confined trapped particles expected for the ATF magnetic field geometry. During the perturbation, the relative level of the density fluctuations in the confinement region (integrated over normalized minor radii p from 0.5 to 0.85) increases from ñ/n ~ 1% when the density profile is flat to ñ/n ~ 3% when the density profile is steepened. These observations are in qualitative agreement with theoretical expectations for helical dissipative trapped-electron modes (DTEMs), which are drift-wave instabilities associated with particle trapping in the helical stellarator field.