ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Qingquan Yu, Sizheng Zhu
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 459-462
Magnetohydrodynamic Equilibrium And Stability | doi.org/10.13182/FST95-A11947128
Articles are hosted by Taylor and Francis Online.
The growth of m/n=2/1 tearing mode is studied numerically in a new kind of equilibrium magnetic configuration: a zeroth-order axisymmetric equilibrium field superposed with a small m/n=7/4 static helical field, where m and n are respectively the poloidal and toroidal mode numbers. The amplitude of the magnetic flux perturbation |φ2/1| is found to be reduced as the magnitude of the m/n=7/4 helical field increases. |φ2/1| can be reduced to zero when the m/n=7/4 magnetic island is large enough that it overlaps the q=2 flux surface. Oscillatory |φ2/1| is also excited with appropriate the magnitude of the m/n=7/4 helical field. These results are of practical interest for tokamak reactor design.