ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S.C. McCool, A.J. Wootton, R.V. Bravenec, P.H. Edmonds, K.W. Gentle, H. Huang, J.W. Jagger, B. Richards, David W. Ross, E.R. Solano, J. Uglum, P.M. Valanju
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 444-450
Advanced Tokamak And Steady-State Sustainment Systems | doi.org/10.13182/FST95-A11947125
Articles are hosted by Taylor and Francis Online.
Recent favorable results on START have caused renewed interest in low aspect ratio tokamaks. To design an economical next-step spherical tokamak to study confinement scaling and high beta plasmas, we have developed a transport scaling and device optimization code. This code OPT, benchmarked against START, includes 10 empirical confinement scaling laws and essential tokamak physics such as stability limits. Parameters are optimized separately for each scaling law and physics goal. Using OPT we find for R/a=1.2 to 2.0 one can achieve βN=5 and <β>=30% with just two neutral beams (PNB<3.5 MW) for Ip≥0.75 MA, and Ro≥0.6 m. In contrast, if one insists on using the nominal device parameters, Ip=1 MA and Ro=0.8 m, with each scaling law, achieving βN=5 requires typically PNB⋍7.5 MW.