ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. H. Neilson
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 428-431
Advanced Tokamak And Steady-State Sustainment Systems | doi.org/10.13182/FST95-A11947121
Articles are hosted by Taylor and Francis Online.
The Tokamak Physics Experiment (TPX) is planned to develop the scientific basis for an economically competitive and continuously operating tokamak fusion power source. It has been designed to have steady-state operating capability, sufficient performance to produce reactor-like plasma configurations, and a flexible set of steady-state plasma controls. Active plasma control (e.g., current profile control, shape and position control, passive and active MHD mode stabilization, and toroidal rotation control) is a key to achieving steady stale tokamak operating conditions with enhanced beta and confinement, efficient current drive, high purity, and high reliability. Inductive scenarios and steady-state operating modes with current-drive have been studied to determine the system requirements for access and maintenance of advanced steady-state modes. Industry contractors have begun detailed engineering design of the superconducting magnets, vacuum vessel, and plasma-facing components.