ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Inutake, S. Furukawa, S. Tanaka, R. Katsumata, A. Ishihara, M. Ichimura, A. Kumagai, K. Hattori, H. Hojo, A. Mase, Y. Nakashima, Y. Nagayama, M. Shoji, N. Yamaguchi, I. Katanuma, D.D. Ryutov, T. Tamano
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 409-412
Mirror Device Studies | doi.org/10.13182/FST95-A11947117
Articles are hosted by Taylor and Francis Online.
Magnetohydrodynamic (MHD) stability of the GAMMA 10 tandem mirror is extensively studied in ICRF-heated, hot ion plasmas. Stability boundary for a flute interchange mode is predicted to depend on a pressure-weighted curvature integrated along the magnetic field line. It is found that upper limit of the central-cell beta βC increases linearly with the anchor-cell beta βA. The critical beta ratio βC/βA above which the plasma cannot be sustained strongly depends on the pressure anisotropy P⊥/P|| of hot ions. Stronger anisotropy greatly expands the stable region up to a higher critical beta ratio, owing to the reduction of the pressure weighting in the bad curvature region of the central cell. On both sides of the quadrupole anchor cells, there are flux-tube-recircularizing transition regions where the normal curvature is highly bad. Then the density and ion temperature of the cold plasma in the transition region are measured. Theoretical prediction on the flute stability boundary calculated by using the measured axial pressure profile of the hot-ion and the cold-plasma pressure can explain well the experimental results.