ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yasushi Ono
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 369-373
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947108
Articles are hosted by Taylor and Francis Online.
A novel slow formation method of field-reversed configuration (FRC) has been developed by magnetic reconnection of two force-free spheromaks with opposite toroidal magnetic field. The merging process cancels their opposite magnetic helicities, realizing a non-Taylor relaxation from the force-free state to the high-β FRC state with zero helicity. A significant increase in the ion temperature has been documented up to 180eV during this fully anti-parallel reconnection. The dissipated toroidal magnetic energy of the merging toroids is transformed mostly to the ion thermal energy, revealing a unique relaxation mechanism to the high-β equilibrium. The merging toroids are found to relax either to an FRC or to a new spheromak, depending on whether their total helicity is larger or smaller than a critical value.