ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yasushi Ono
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 369-373
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947108
Articles are hosted by Taylor and Francis Online.
A novel slow formation method of field-reversed configuration (FRC) has been developed by magnetic reconnection of two force-free spheromaks with opposite toroidal magnetic field. The merging process cancels their opposite magnetic helicities, realizing a non-Taylor relaxation from the force-free state to the high-β FRC state with zero helicity. A significant increase in the ion temperature has been documented up to 180eV during this fully anti-parallel reconnection. The dissipated toroidal magnetic energy of the merging toroids is transformed mostly to the ion thermal energy, revealing a unique relaxation mechanism to the high-β equilibrium. The merging toroids are found to relax either to an FRC or to a new spheromak, depending on whether their total helicity is larger or smaller than a critical value.