ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shoichi Ohi
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 349-352
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947103
Articles are hosted by Taylor and Francis Online.
Confinement times of particle and trapped magnetic flux in FRC plasmas were simulated using a one dimensional transport model and classical (Spitzer's) resistivity. Comparing the simulation results and experimental results indicated that a transport in the plasmas was basically classical and deviations of experimental results from classical values (so-called anomaly) might attribute to a plasma geometry effect, by which the deviation was larger for fat plasmas and smaller for prolate ones.
In order to verify this indication, a plasma electron heating with an axial injection of pulsed and intense ion beams was proposed for the plasmas in current FRC experiments. Possibility of this heating were examined by estimating an energy deposit rate of a beam ion in the plasmas. The energy deposit rate is a few%~about 100% for a plasma of 12cm in diameter and 80cm in length with a plasma parameter range of current experiments.