ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shigefumi Okada, Susumu Ueki, Haruhiko Himura, Seiichi Goto
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 341-344
Compact Torus (Field-Reversed Configuration, Spheromak) Concepts | doi.org/10.13182/FST95-A11947101
Articles are hosted by Taylor and Francis Online.
Confinement magnetic field of a field-reversed-configuration (FRC) plasma is reduced by a factor of about 10 and plasma density is decreased by a factor of about 100 without lowering the temperature seriously by translating a theta-pinch produced FRC plasma axially into a large bore metal vessel. Reduced magnetic field brings the lower-hybrid frequency into a range easily detected by magnetic probes. Search for wave activities in the FRC plasma for a wide frequency range disclosed magnetic field fluctuations in the lower-hybrid-drift frequency range for the first time in the FRC plasma. The identification of the mode is not done yet but the fluctuation level is close to the values predicted by theories on the LHD instability. This fluctuation level is not large enough to account for the transport rate of the particles from the FRC plasma.