ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Shats, B.D. Blackwell, G.G. Borg, S.M. Hamberger, J. Howard, D.L. Rudakov, L.E. Sharp
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 286-292
Helical Systems | doi.org/10.13182/FST95-A11947089
Articles are hosted by Taylor and Francis Online.
The results of the experimental study of the magnetic configurations in the H-1 heliac are presented. The shape of the flux surfaces and the rotational transform in H-1 can be controlled by varying external coil currents. Electron beam magnetic mapping has been performed to show the existence of closed nested flux surfaces and to observe the effect of small errors in coil alignment on the vacuum magnetic structure in H-1. Langmuir probes have been used to study the electron density profiles in a current-free collisional RF-sustained plasma (ne ≤ 4×1012 cm-3, Te ≤ 15 eV). In standard magnetic configuration and for the present moderate RF power levels, the highest central density is achieved at rather low magnetic field (0.07 T). This regime is characterised by peaked density profiles that appear to have a maximum coincident with the position of the vacuum magnetic axis. When a lowest-order m = 1, n = 1 resonance is introduced inside the outermost magnetic surface a strong asymmetry in both the vacuum magnetic structure and the plasma density profiles is observed. We observed low frequency (2–3 kHz) density fluctuations having low radial mode numbers and internal parallel plasma current localised in the regions of highest density gradient. These fluctuations are effectively suppressed by an increase of the magnetic field.