ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Iwase, S. Kubo, R. Kumazawa, H. Idei, K. Ohkubo, T. Mutoh, T. Watari, K. Nishimura, S. Okamura, K. Matsuoka, T. Minami, I. Yamada, K. Narihara, K. Ida, H. Iguchi
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 248-251
Helical Systems | doi.org/10.13182/FST95-A11947080
Articles are hosted by Taylor and Francis Online.
The electron power deposition profile has been estimated experimentally during the ion cyclotron range of frequency (ICRF) heating and the electron cyclotron resonance heating (ECRH) in the compact helical system (CHS). The time evolution of the local electron temperature is measured from the second harmonic electron cyclotron emission (ECE) using super heterodyne radiometer. The absorbed power by electrons has been derived from the change in the slopes of the local electron temperature just before and after the input power is turned off. The power deposition profiles of electrons are compared with results from the calculation code in ICRF experiment. Those results show good agreement. In the ECRH experiment the input power is modulated to reduce the power deposition profile. Those analyses give results that the input power is absorbed around ρ =0.6.