ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
S. Morita, H. Yamada, R. Akiyama, A. Ando, H. Arimoto, K. Ida, H. Idei, H. Iguchi, O. Kaneko, S. Kubo, R. Kumazawa, K. Matsuoka, T. Minami, T. Morisaki, S. Muto, K. Narihara, K. Nishimura, S. Okamura, T. Ozaki, S. Sakakibara, C. Takahashi, K. Tanaka, J. Xu, I. Yamada
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 239-243
Helical Systems | doi.org/10.13182/FST95-A11947078
Articles are hosted by Taylor and Francis Online.
Particle confinement time τp has been obtained from measurements of poloidal and toroidal distributions of Ha and Lyman a emissions in CHS. These particle confinement times range between 1.5 and 4ms at a constant line-averaged density of 3×1013cm–3 for both cases of limiter- and divertor-dominated NBI plasmas with Ti-gettering. In these cases the energy confinement time τE were between 2 and 3ms. The density decay characteristic time τp* and global recycling coefficient R have been also measured for Ti-gettered plasmas and large τp* values were observed. As a result high recycling rates (R>0.92) are obtained for a wide density range. For a limiter-dominated case of boronized plasmas (Rax=92.1cm) values of τp were correlated with τE and a linear correlation between them was found for normalized τE to P-0.58 which is a power degradation term in LHD empirical scaling.