ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. Morita, H. Yamada, R. Akiyama, A. Ando, H. Arimoto, K. Ida, H. Idei, H. Iguchi, O. Kaneko, S. Kubo, R. Kumazawa, K. Matsuoka, T. Minami, T. Morisaki, S. Muto, K. Narihara, K. Nishimura, S. Okamura, T. Ozaki, S. Sakakibara, C. Takahashi, K. Tanaka, J. Xu, I. Yamada
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 239-243
Helical Systems | doi.org/10.13182/FST95-A11947078
Articles are hosted by Taylor and Francis Online.
Particle confinement time τp has been obtained from measurements of poloidal and toroidal distributions of Ha and Lyman a emissions in CHS. These particle confinement times range between 1.5 and 4ms at a constant line-averaged density of 3×1013cm–3 for both cases of limiter- and divertor-dominated NBI plasmas with Ti-gettering. In these cases the energy confinement time τE were between 2 and 3ms. The density decay characteristic time τp* and global recycling coefficient R have been also measured for Ti-gettered plasmas and large τp* values were observed. As a result high recycling rates (R>0.92) are obtained for a wide density range. For a limiter-dominated case of boronized plasmas (Rax=92.1cm) values of τp were correlated with τE and a linear correlation between them was found for normalized τE to P-0.58 which is a power degradation term in LHD empirical scaling.