ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kenzo Munakata, Teruki Fukumatsu, Satoshi Odoi, Masabumi Nishikawa
Fusion Science and Technology | Volume 33 | Number 4 | July 1998 | Pages 435-442
Technical Paper | doi.org/10.13182/FST98-A42
Articles are hosted by Taylor and Francis Online.
Catalytic oxidation and adsorption comprise the most conventional and reliable method for removing tritium that is accidentally released into the working area of fusion power plants. Based on both hot and cold experimental databases, a numerical calculation code with the temporary name TRITON QUEST is being developed to support the design of the air cleanup system. The code has been considerably improved in terms of mass balance equations and calculation method. It has also become possible to conduct larger-scale computations in which catalyst or adsorption beds of actual scale are used. The behavior of tritium in the case of an accidental release of 100 g of tritium in the International Thermonuclear Experimental Reactor (ITER) test plant was predicted using this numerical computation code. The results of numerical computation indicate that the tritium concentration in a room with a volume of 10 000 m3 can be reduced to the regulatory level within 24 h when an air cleanup system with 1000 kg of Pt/alumina catalyst and 2500 kg of MS5A is operated with a ventilation rate of 10 000 m3/h. The decontamination efficiency for new arrangements of the air cleanup system was also investigated. The results suggest that the new arrangements have an advantage in the regeneration of the air cleanup system.