ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. Besshou, K. Ogata, K. Kondo, T. Mizuuchi, K. Nagasaki, H. Okada, F. Sano, H. Zushi, T. Obiki
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 219-222
Helical Systems | doi.org/10.13182/FST95-A11947073
Articles are hosted by Taylor and Francis Online.
This paper describes the realization of magnetic detection of the finite β free boundary plasma shin for a toroidal helical plasma. Recent experimental results, the normalized displacement Δb/ap as a function of volume average beta <β>, are discussed. The measured typical plasma boundary shift, Δb/ap, in the standard Heliotron E configuration (Rp=2.20m, ap=0.21m, Ԏ/2ᴨ(0)~0.53, Ԏ/2ᴨ(ap)~2.8) is (5–12)x10–3, when the volume averaged beta is 0.50%. The measured normalized plasma boundary shift is nearly proportional to the diamagnetic volume-averaged beta, for values of beta up to 0.95%. The magnetically determined plasma boundary shift Δb is less than 3 mm. The measured shift is in the range in-between the expected upper limit (Δb/ap = β(0)/2βeq) and the lower limit (Δb/ap = <β>/2βeq), where βeq = (Ԏ/2ᴨ(ap))2(ap/Rp)~0.77 for the standard configuration of Heliotron E.
We find that the measured free boundary plasma shift strongly depends on the initial vacuum magnetic configuration parameters such as the horizontal position of magnetic axis and the rotational transform. When the vacuum magnetic axis is shifted inward toward the major axis, we observed a significant decrease of the normalized plasma shift (Δb/ap) and the plasma induced vertical field, which we interpret as being due to a reduction of Pfirsch-Schlüter current.