ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Besshou, K. Ogata, K. Kondo, T. Mizuuchi, K. Nagasaki, H. Okada, F. Sano, H. Zushi, T. Obiki
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 219-222
Helical Systems | doi.org/10.13182/FST95-A11947073
Articles are hosted by Taylor and Francis Online.
This paper describes the realization of magnetic detection of the finite β free boundary plasma shin for a toroidal helical plasma. Recent experimental results, the normalized displacement Δb/ap as a function of volume average beta <β>, are discussed. The measured typical plasma boundary shift, Δb/ap, in the standard Heliotron E configuration (Rp=2.20m, ap=0.21m, Ԏ/2ᴨ(0)~0.53, Ԏ/2ᴨ(ap)~2.8) is (5–12)x10–3, when the volume averaged beta is 0.50%. The measured normalized plasma boundary shift is nearly proportional to the diamagnetic volume-averaged beta, for values of beta up to 0.95%. The magnetically determined plasma boundary shift Δb is less than 3 mm. The measured shift is in the range in-between the expected upper limit (Δb/ap = β(0)/2βeq) and the lower limit (Δb/ap = <β>/2βeq), where βeq = (Ԏ/2ᴨ(ap))2(ap/Rp)~0.77 for the standard configuration of Heliotron E.
We find that the measured free boundary plasma shift strongly depends on the initial vacuum magnetic configuration parameters such as the horizontal position of magnetic axis and the rotational transform. When the vacuum magnetic axis is shifted inward toward the major axis, we observed a significant decrease of the normalized plasma shift (Δb/ap) and the plasma induced vertical field, which we interpret as being due to a reduction of Pfirsch-Schlüter current.