ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B.J. Peterson, J.N. Talmadge, D.T. Anderson, F.S.B. Anderson, P.G. Matthews, J.L. Shohet
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 215-218
Helical Systems | doi.org/10.13182/FST95-A11947072
Articles are hosted by Taylor and Francis Online.
Mach probe measurements of bias-induced ion flows were made in the Interchangeable Module Stellarator (IMS) as a function of neutral pressure and viscosity (which increases with minor radius) and compared to a fluid theory model. Using a probe model for an unmagnetized plasma, the poloidal flow speed measured with a Mach probe agrees with that calculated from momentum balance to within 15%. The dependencies of the measured ion flow magnitudes and decay rates on neutral pressure and viscosity as predicted by the theory are qualitatively observed in the experimental measurements, clearly demonstrating the effects of both ion-neutral collisions and viscosity in the damping of the bias-induced flows. However, the measured flow direction is nearly poloidal, while the theory predicts a predominantly Pfirsch-Schlüter-like toroidal flow. Also, the two-dimensional variation at a constant toroidal angle of the parallel electron current was measured in an unbiased plasma. The measured profiles demonstrate the dependence of the current on both the radial pressure gradient and the cosine of the poloidal angle, as predicted by theory.