ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shoichi Okamura, Noriyoshi Nakajima, Hiroshi Yamada, Keisuke Matsuoka, Kiyohiko Nishimura, Akira Ando, Akira Ejiri, Katsumi Ida, Harukazu Iguchi, Takashi Minami, Shigeru Morita, Kazumichi Narihara, Jihua Xu, Ichihiro Yamada, Satoru Sakakibara
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 178-181
Helical Systems | doi.org/10.13182/FST95-A11947063
Articles are hosted by Taylor and Francis Online.
In the vacuum magnetic field configuration of CHS, the MHD stability depends on the position of magnetic axis (Rax). When Rax > 95 cm, the magnetic well in the central region and the strong magnetic shear in the boundary region give the MHD stability for the ideal interchange. For the inward shifted configuration, the Mercier unstable region comes out. The volume-averaged equilibrium beta 2.1 % was obtained in 1993 with Rax = 92 cm configuration. The self-stabilization effect of high-beta plasma gave Mercier stable equilibrium while the Rax = 92 cm configuration has the Mercier unstable region for low-beta plasmas. The measurements of magnetic fluctuations and the soft X-ray signals did not show strong instabilities in these discharges. In order to evaluate the stability boundary for ideal interchange instabilities, the efforts of producing high-beta plasmas have been made for more inward shifted magnetic axis configurations (89 cm < Rax < 92 cm). The strong MHD activities were observed for those discharges.