ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Makoto Katsurai
Fusion Science and Technology | Volume 27 | Number 3 | April 1995 | Pages 97-103
Overview Paper | doi.org/10.13182/FST95-A11947052
Articles are hosted by Taylor and Francis Online.
The TS-3 device at the University of Tokyo has been used to produce tree boundary spheromaks or spheromak-like compact toroids. Plasma production is accomplished either by Z-θ discharges or by means of magnetized coaxial plasma guns installed at both ends of the device. The plasmas produced have a minor=major radius of about 15 to 20 cm with a natural decay time of about 30 to 50 μs and a toroidal plasma current of about 30 to 60 kA. A unique feature of TS-3 device is the possession of production regions at both ends of the device, and concequently the ability of producing two adjacent compact toroids which can be merged through magnetic reconnection. Another feature of TS-3 device is the possibility of external application of a toroidal field with the aid of an optional center conductor assembly that can carry an axial current ranging from 0 to ±80 kA. This construction enables us to produce compact toroidal plasmas of various types from reversed field pinch(RFP) to tokamak in terms of the difference in q profile. The variation of both poloidal plasma current and external toroidal field current permits the change in magnetic configuration of merging plasmas, enabling the reconnection angle to continuously vary from about 20° (tokamak merging) through 90° (cohelicity spheromak merging) to 180° (counter-helicity spheromak merging to produce field reversed configurations(FRC)). When the coaxial guns are installed at both ends of the device in place of the center conductor, a center plasma current can be injected to form flux-core spheromaks (or bumpy z-pinches). Novel research subjects that have emerged from TS-3 experiments are; (1) the investigation of three dimensional effects of magnetic reconnection in laboratory plasmas. (2) the formation of FRC plasmas by a counter-helicity spheromak merging, (3) non-OH production and merging of tight aspect ratio tokamaks, (4) the stabilization of tilt motions of tight aspect ratio tokamaks, and (5) the formation and compression (flux amplification) of free-boundary tilt stabilized flux-core spheromaks.