ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S.K. Sood, K.M. Kalyanam
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 79-84
doi.org/10.13182/FST95-A11963809
Articles are hosted by Taylor and Francis Online.
Tritiated water represents a source of occupational exposure and environmental emissions for fusion and fission reactors. Fusion reactors must operate within stringent radionuclide emission limits.
A range of tritiated water concentrations can be generated in fusion reactors, mostly in the form of tritiated light water. In contrast, tritium removal plants have been built in Canada and France to remove tritium from heavy water moderated fission reactors.
Various isotope separation processes have been developed to remove tritium from light and heavy water. Appropriate process selection depends, amongst other items, on whether tritium is to be removed from light or heavy water, and on whether the detritiated water is recycled back to a process system or is discharged to the environment.
This paper primarily discusses water detritiation requirements in fusion reactors and outlines process options that are suitable for meeting these requirements.