ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
G. Modica, R.A.H. Edwards
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 75-78
doi.org/10.13182/FST95-A11963808
Articles are hosted by Taylor and Francis Online.
Tritiated water (Q2O) is produced during fusion fuel purification or air detritiation. Before recovering the tritium by isotope separation, the Q2O needs to be reduced to form Q2 gas. The reduction of tritiated water on iron is an alternative to electrolysis and gas-shift reactors. It allows a simple, compact, configuration with low tritium inventory. The reactor design incorporates a palladium alloy permeator which extracts the Q2.
Tests on a commercial iron-based catalyst showed a high reactivity and no degradation with repeated cycling. The optimum temperature for water reduction was 375–395 C, and for iron regeneration using hydrogen, 470–495 C. The first prototype reactor-permeator decomposed 9.5 g water in 8 hrs using 210 g iron. The time needed for iron regeneration was reduced to 16 hrs by recirculating the hydrogen. A pilot-scale reactor permeator is now under development: it should be capable of reducing 35 kg of water per year, operating at 1 bar. Attention to the choice of structural materials will minimise tritium carryover into the water produced during regeneration.