ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
C. Boffito, A. Conte, G. Gasparini
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 69-74
doi.org/10.13182/FST95-A11963807
Articles are hosted by Taylor and Francis Online.
The dissociation of tritiated water and the recovery of tritium is an important issue for the future thermonuclear fusion device.
Various solutions have been prospected including chemical dissociation on active beds.
The results of H2O sorption tests performed on different possible candidate alloys, by means of vacuum microbalance tecnique at a pressure of some hundreds Pa and at temperatures ranging from 300 to 400°C, are presented. From these tests a ternary Zr-Mn-Fe alloy appears to have promising features, combining good dissociation characteristics for H2O with low hydrogen pick-up.
The basic properties of this material are discussed, including structural aspects and sorption characteristics vs. other gases.