ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hiroshi Noguchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 56-61
doi.org/10.13182/FST95-A11963805
Articles are hosted by Taylor and Francis Online.
The conversion reaction of tritium gas to tritiated water in dry air has been studied using low–concentration tritium gases which have three different hydrogen isotope compositions. The conversion was directly proportional to a ratio of radioactivity of T2 to that of total tritium. This demonstrates that the T2 decay process is predominant for the conversion reaction at low initial tritium concentrations. First-order rate constants for the reaction in dry air are found to be independent of initial tritium concentration. A model to predict the rate constant of the production of tritiated water from T2 in dry air has been developed. The modeling results show that the T2 decay process is predominant at low concentrations, while O+ and N2+ ions formed through tritium beta-ray induced reactions play important roles at high concentrations.