ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hiroshi Noguchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 56-61
doi.org/10.13182/FST95-A11963805
Articles are hosted by Taylor and Francis Online.
The conversion reaction of tritium gas to tritiated water in dry air has been studied using low–concentration tritium gases which have three different hydrogen isotope compositions. The conversion was directly proportional to a ratio of radioactivity of T2 to that of total tritium. This demonstrates that the T2 decay process is predominant for the conversion reaction at low initial tritium concentrations. First-order rate constants for the reaction in dry air are found to be independent of initial tritium concentration. A model to predict the rate constant of the production of tritiated water from T2 in dry air has been developed. The modeling results show that the T2 decay process is predominant at low concentrations, while O+ and N2+ ions formed through tritium beta-ray induced reactions play important roles at high concentrations.