ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Albrecht
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 25-29
doi.org/10.13182/FST95-A11963801
Articles are hosted by Taylor and Francis Online.
The main task of a Tritium Extraction System (TES) for a helium cooled Li4SiO4 DEMO blanket is the tritium recovery from a purge gas stream. On the basis of several TES proposals published for a NET/ITER solid breeder blanket, a new concept has been developed which is especially appropriate to cope with large purge gas streams.
As tritium is expected to appear in two chemical forms (HT and HTO) two specific process steps are used for its removal from the primary purge gas loop: a cooler to freeze out Q2O at 173 K (Q = H,T), and a molecular sieve bed to absorb Q2 at 78 K.
Only these components including some additional devices for the gas pre-conditioning like a compressor and a precooler, are subjected to the high gas flow rates mentioned above. All further processing is done in relatively small secondary loops during and after warmup of the cooler and the molecular sieve bed. Q2O reduction by using the water gas shift reaction, and separation of Q2 with Pd/Ag diffusors are the main process steps in the secondary loops.
The feasibility of the proposed method is very promising as all process steps are based on well known technical and radiochemical experience.