ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
C. Malara, A. Viola
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 19-24
doi.org/10.13182/FST95-A11963800
Articles are hosted by Taylor and Francis Online.
The problem of tritium recovery from Li17Pb83 blanket of a DEMO fusion reactor is analyzed with the objective of limiting tritium permeation into the cooling water to acceptable levels. To this aim, a mathematical model describing the tritium behaviour in blanket/recovery unit circuit has been formulated. By solving the model equations, tritium permeation rate into the cooling water and trituim inventory in the blanket are evaluated as a function of dimensionless parameters describing the combined effects of overall resistance for tritium transfer from Li17Pb83 alloy to cooling water, circulating rate of the molten alloy in blanket/recovery unit circuit and extraction efficiency of tritium recovery unit. The extraction efficiency is, in turn, evaluated as a function of the operating conditions of recovery unit. The design of tritium recovery unit is then optimized on the basis of the above parametric analysis and the results are herein reported and discussed for a tritium permeation limit of 10 g/day into the cooling water.