ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. D. Baker, D. H. Meikrantz, R. J. Pawelko, R. A. Anderl, D. G. Tuggle
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 8-13
doi.org/10.13182/FST95-A11963798
Articles are hosted by Taylor and Francis Online.
A zirconium-manganese-iron alloy, St 909, was evaluated as a purifier in tritium handling, transport, and storage applications. High efficiency removal of CH4, CO, CO2, NH3, and O2 was observed at concentrations of 0.1 to 1% in helium. Gas streams at 100 to 5000 sccm were passed through getters operated at 600–800°C. On-getter residence times of two seconds were required to achieve >99% removal of these reactive impurities. At this removal efficiency level, the individual impurity capacity of 100 g of St 909 purifier at 800°C was 0.59, 0.28, 0.19, 0.14 and 0.12 moles of CH4, CO, CO2, O2 and NH3, respectively. Hydrogen containing gasses; CH4 and NH3; were cracked on the purifier and the resultant elemental hydrogen was released. Only 8 ± 2 scc of H2 were retained on 100 g of St 909 at 800°C. These features suggest that this alloy can be employed as an efficient purifier for hydrogen isotopes in inert gas, nitrogen, or perhaps even H, D, or T streams.