ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
David Murdoch
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 1-7
doi.org/10.13182/FST95-A11963797
Articles are hosted by Taylor and Francis Online.
The design concepts and machine operating parameters which are now emerging for ITER demand novel fuel cycle system designs. The requirement that the torus vacuum system and the fuelling system be installed inside the cryostat imposes a range of stringent environmental constraints. The high divertor pressure which is characteristic of the ITER-EDA involves the development of completely new pumping concepts, and the lower specific tritium inventories now targetted will impact the design of systems and components throughout the fuel cycle.
The new design input parameters are reviewed in the paper, and a range of advanced pumping concepts proposed as candidates for the ITER torus vacuum duty are outlined. The R & D programme priorities as outlined by the ITER-JCT and as presently implemented by the EC Home Team are reviewed.
The status of the design for the SEAFP (Safety and Environmental Aspects of Fusion Power) studies is outlined, and the essential differences from ITER are described. The key R & D issues associated with the SEAFP fuel cycle design are listed.