ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Szöke, R.W. Moir
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 1012-1021
Advanced Energy Conversion/Storage and Exotic Concepts | doi.org/10.13182/FST91-A11946975
Articles are hosted by Taylor and Francis Online.
This article describes, in broad outline, a nuclear power plant that generates power by means of repetitive, low-yield explosions in an underground chamber. Such a plant can be built in the near future by using modest extensions of existing technology, and it could be economically competitive if certain parts of the cost are controlled. This is in contrast to magnetic and inertial confinement fusion, of which the technical and economic feasibility will remain highly uncertain for the foreseeable future. Technical improvements of the envisioned plant can be introduced gradually with corresponding reductions in cost of power production. With advancing technology, an increasingly larger fraction of the power can be extracted from fusion reactions, thus providing a smooth transition to a fusion-based economy. Eventually, pure (inertial) fusion schemes could be incorporated into the power plant in a natural way, thereby shortening the time required to achieve large-scale use of fusion power–-possibly by decades. This article considers both the technical aspects of this route to fusion power and the relevant issues of public policy.