ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. H. Miley
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 977-986
Advanced Energy Conversion/Storage and Exotic Concepts | doi.org/10.13182/FST91-A11946970
Articles are hosted by Taylor and Francis Online.
The importance of direct energy conversion to the long-term development of nuclear power (both fission and fusion) is discussed as an approach to alleviating waste heat problems, reducing overall system costs and enabling new uses such as nuclear space power propulsion. Various approaches that involve direct conversion of radiation energy are considered relative to fission reactors. The examples discussed involve the direct conversion of fission fragment energy to electricity, to thrust for propulsion, and to coherent laser light, illustrating the rich variety of potential conversion methods that can be envisioned.
Applications to future fusion systems are also discussed. Two approaches are considered: direct collection of fusion product energy, and extraction of plasma radiation energy.
Finally, thermal direct conversion is included as an important near term route to enhanced performance, e.g., in-core thermionic converters potentially offer enhanced operation of a SP100 type reactor for space applications.