ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
M. Piera, J.M. Martínez-Val, J.M. Perlado
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 964-968
Fusion-Fission Hybrids | doi.org/10.13182/FST91-A11946968
Articles are hosted by Taylor and Francis Online.
The neutronic performance of a hybrid in analysed on the basis of a set of lumped parameters which properly characterize the main features of the hybrid, as energy multiplication or fissile breeding. This analysis enables one to identify the parametric ranges or design windows where a specific hybrid objective can be met. It is shown that fissile fuel production to feed fission reactors requires a set of parameters totally different from that of an energy amplifier hybrid. The latter can be designed to maintain a high factor of energy multiplication for very long burnups. The former reaches the maximum capability to feed fission reactors in the limit of fission-suppressed hybrids, which requires the fertile capture cross section to be as high as possible as compared to the fissile fission cross section. Upper limits of the magnitudes characterizing the neutronic performance are identified.