ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Winfried Kernbichler
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 863-867
Magnetic Fusion Reactors/Beam-Driven Systems | doi.org/10.13182/FST91-A11946950
Articles are hosted by Taylor and Francis Online.
The intrinsic potential of a Field-Reversed Configuration (FRC) for high-β operation – with β-values in the range of 50 to 100% – stimulates much interest in this device as an attractive candidate for a compact fusion reactor with high power density. Several additional benefits, e.g. the cylindrical geometry of the concept, the simplicity of the magnetic system, the simply connected plasma, the low synchrotron radiation, the divertor action of the open field lines and the possibility for direct energy conversion of the charged particle flow, justify a closer look at the benefits and problems of FRCs.
Based on a reference parameter set developed within the international reactor study RUBY [1], the advantages and disadvantages of FRCs are discussed. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent start-up to high temperatures would be particularly detrimental for D-3He with its higher operational requirements (e.g. Ti, nτE, …).