ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Samuel G. Durbin II, Timothy P. Koehler, Jefferey J. R. Reperant, Minami Yoda, Said I. Abdel-Khalik, Dennis L. Sadowski
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 1-10
Technical Paper | doi.org/10.13182/FST04-A419
Articles are hosted by Taylor and Francis Online.
A lattice consisting of arrays of stationary turbulent liquid sheets has been proposed for the HYLIFE-II inertial fusion energy reactor design to allow target injection and driver-beam propagation while protecting the first walls from damaging radiation. Interference between these sheets and the driver beams must be avoided, placing strict requirements on sheet free-surface fluctuations. Experiments were performed on nearly prototypical liquid sheets to determine the surface ripple and the absolute position of the free surface with respect to the nozzle exit. Planar laser-induced fluorescence was used to directly image the free surface at downstream distances up to 25 times the jet thickness (i.e., short dimension) at the nozzle exit for Reynolds numbers up to 130 000. Surface ripple, calculated using two different methods, was compared for two nozzle and two flow straightener designs. The surface ripple was found to be <0.05 (versus the current HYLIFE-II requirement of 0.07). The mean thickness of the sheet was found to decrease with increasing x. This work should be useful in establishing the minimum distance between neighboring jets to avoid interference with the driver beams and to provide quantitative geometric data for shielding and neutronics analyses of such systems.