ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
I.R. Lindemuth, R. C. Kirkpatrick
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 829-833
Inertial Confinement Fusion | doi.org/10.13182/FST91-A11946944
Articles are hosted by Taylor and Francis Online.
At the third International Conference on Emerging Nuclear Energy Systems [1], we presented computational results which suggested that “breakeven” experiments in inertial confinement fusion (ICF) may be possible with existing driver technology. Our computations used a simple zero-dimensional model to survey the parameter space available for magnetized fuel. The survey predicted the existence of a totally new region in parameter space where significant thermonuclear fuel burn-up can occur. The new region is quite remote from “conventional” parameter space and is characterized by very low fuel densities, very low implosion velocities, and, most importantly, driver requirements reduced by orders of magnitude [2]. Whereas our initial computations considered only the yield from a hot, magnetized central fuel, we have extended our simple model to include a “cold fuel” layer. In the same spirit as our earlier work, our extended model is intended to provide a starting point for more comprehensive investigations. Our extended model predicts that it is possible to obtain a large cold fuel burn-up fraction, leading to very high gain, and once again, the optimum parameter space is quite remote from that of conventional high gain targets. Although conventional drivers optimized for conventional targets are probably not optimum for magnetized fuel at its extremes, there is a continuum between the conventional parameter space and the new parameter space, suggesting a possible role for conventional drivers. However, it would appear that magnetized fuel warrants a complete rethinking of the entire driver/target configuration.