ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. E. Kim, M. Rabinowitz, Y. K. Bae, G. S. Chulick, R. A. Rice
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 797-807
Inertial Confinement Fusion | doi.org/10.13182/FST91-A11946939
Articles are hosted by Taylor and Francis Online.
In recent experiments, cluster beams of ≳ 100 keV (D2O)+n impacting on deuterated targets produced much higher than expected D – D fusion rates. We present a novel hot plasma shock-wave model for cluster–impact fusion that is capable of explaining and reproducing the known experimental data. We demonstrate that clusters are capable of inducing shock waves, and that concomitant energy losses are negligible in the present experiments. From our model, we present predictions for D – D and D – T fusion rates for a variety of different targets which may give even higher yields in future experiments. Furthermore, we show theoretically that it is highly unlikely that cluster–impact fusion data can be explained on the basis of artifacts such as light ionic contaminants. Finally, we show that the observed line broadening of the proton spectrum is consistent with our prediction of a high temperature in the impact region.