ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Y. E. Kim, M. Rabinowitz, Y. K. Bae, G. S. Chulick, R. A. Rice
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 797-807
Inertial Confinement Fusion | doi.org/10.13182/FST91-A11946939
Articles are hosted by Taylor and Francis Online.
In recent experiments, cluster beams of ≳ 100 keV (D2O)+n impacting on deuterated targets produced much higher than expected D – D fusion rates. We present a novel hot plasma shock-wave model for cluster–impact fusion that is capable of explaining and reproducing the known experimental data. We demonstrate that clusters are capable of inducing shock waves, and that concomitant energy losses are negligible in the present experiments. From our model, we present predictions for D – D and D – T fusion rates for a variety of different targets which may give even higher yields in future experiments. Furthermore, we show theoretically that it is highly unlikely that cluster–impact fusion data can be explained on the basis of artifacts such as light ionic contaminants. Finally, we show that the observed line broadening of the proton spectrum is consistent with our prediction of a high temperature in the impact region.