ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. W. Hartman, J. L. Eddleman, J. H. Hammer, B. G. Logan, H. S. McLean, R. W. Moir, A. W. Molvik
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 776-786
Inertial Confinement Fusion | doi.org/10.13182/FST91-A11946936
Articles are hosted by Taylor and Francis Online.
The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high-energy, high-power-density driver for ICF and MICF (Magnetically Insulated ICF) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ~30 MJ CT kinetic energy to a 1 cm2 target in several nanoseconds for a power density of ~1016 watts/cm2. The estimated cost of delivered energy is ~3$/Joule. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. A reactor system for CT injection, target emplacement, containment, energy recovery, and breeding will be described. The CTA naturally lends itself as a driver for MICF where an energetic (≈100 MJ) CT is injected into a containment sphere generating shock heating which initiates a magnetically insulated DT burn with refueling for Q ≃ 70 and a fusion yield of 7 GJ. The containment sphere, which is chosen to be several 14 MeV neutron mfp's thick, is vaporized and heated by fusion neutrons and expands into the main reactor containment chamber to form the working gas for direct electrical energy recovery through an MHD generator cycle. Application of the MICF system to spaceship propulsion will also be discussed.