ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
A.C. Klein, R.A. Pawlowski, H.H. Lee
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 759-766
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946933
Articles are hosted by Taylor and Francis Online.
Incore thermionic space reactor design concepts which operate at a nominal power output range of between 20 and 50 kWe are described. Details of the neutronic, thermionic, thermal, and shielding performance are presented. These moderated reactor concepts use enriched uranium dioxide fuel, zirconium hydride moderator, reinforced tungsten emitters, niobium collectors, alumina insulators, and sodium-potassium coolant in a long, single cell configuration. Due to the strong absorption of thermal neutrons by natural tungsten, and the large amount of that material within the reactor core, two options for the reactor are considered. The first uses enriched tungsten (greater than 70 weight percent W-184) emitters and only thermionic fuel elements (TFEs) in the core to achieve criticality and sufficient lifetime. The second option uses natural tungsten and driver fuel elements in addition to the TFEs in the core. An overall systems design code has been developed to model advanced incore thermionic energy conversion based nuclear reactor systems for space applications. The code modules include neutronics and core criticality, a thermionic fuel element performance module with integral thermal hydraulic calculation capability, a radiation shielding module, and a module for waste heat rejection. Coupled thermal hydraulic and thermionic performance calculations are presented. The model includes the effects of radiation and conductive heat transfer as well as electron cooling of the emitter, and the resistive lead losses on long emitter TFE concepts. Radiation shielding design and overall system heat rejection analyses are also presented.