ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
O.C. Jones
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 741-746
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946930
Articles are hosted by Taylor and Francis Online.
This paper describes the current state of knowledge of the rotating fluidized bed reactor for space power and propulsion application. The results of typical calculations of the thermofluid behavior are given showing how reactor parametrics affect the power level and size of the reactor. Thermal stress analysis of the blind-end plate of the engine chamber has shown the need for creative design effort to preclude failure. Coupled thermofluid-neutronic stability analysis including the effects of the expanding particulate fuel bed indicate adequate stability margins which are, nevertheless, orders of magnitude less than those for the equivalent fixed bed reactor. The overall design concept appears capable of providing very high power density propulsion with powers in the range of 250-5000 MW or larger. This concept thus appears to be enabling for short-time missions including LEO-to-GEO interorbital transfer, lunar, or interplanetary transport at 1-g.