ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C.L. Leakeas, C.K. Choi, F.B. Mead
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 735-740
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946929
Articles are hosted by Taylor and Francis Online.
A space propulsion system has been proposed which may use the dense plasma focus (DPF) as its source of power.1 Three modes of operation were identified and each was investigated for its usefulness in space travel with special attention paid to a manned Mars mission. Using fusion products to directly produce thrust resulted in Isp's around 106 sec, but produced system thrust-to-weight ratios (F/W) less than 10-5. This F/w is many orders of magnitude less than a typical value of 0.2 for a manned Mars mission which is presently possible with chemical and nuclear thermal rockets.2 Exhausting additional hydrogen propellant over a time period comparable to the flight time results in F/W ratios of 0.003 at Isp's of 10,000 sec. Using large quantities of propellant to burn “impulsively” gave Isp's of 4,000 sec with F/w equal 0.05 for one thruster and 0.132 if 5 thrusters are used.3