ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C.L. Leakeas, C.K. Choi, F.B. Mead
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 735-740
Space Nuclear Power/Propulsion | doi.org/10.13182/FST91-A11946929
Articles are hosted by Taylor and Francis Online.
A space propulsion system has been proposed which may use the dense plasma focus (DPF) as its source of power.1 Three modes of operation were identified and each was investigated for its usefulness in space travel with special attention paid to a manned Mars mission. Using fusion products to directly produce thrust resulted in Isp's around 106 sec, but produced system thrust-to-weight ratios (F/W) less than 10-5. This F/w is many orders of magnitude less than a typical value of 0.2 for a manned Mars mission which is presently possible with chemical and nuclear thermal rockets.2 Exhausting additional hydrogen propellant over a time period comparable to the flight time results in F/W ratios of 0.003 at Isp's of 10,000 sec. Using large quantities of propellant to burn “impulsively” gave Isp's of 4,000 sec with F/w equal 0.05 for one thruster and 0.132 if 5 thrusters are used.3