ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. P. Lawrence, R. A. Jameson, S. O. Schriber
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 652-656
Accelerator/Reactor Waste Transmutation | doi.org/10.13182/FST91-A11946914
Articles are hosted by Taylor and Francis Online.
Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-McV, 140-mA cw conventional copper linac could destroy the accumulated 99Tc and 129I at the DOE's Hanford site within 30 years. A high-efficiency 1200-McV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWc electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base.