ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E.U. Bashlakova, V.V. Ignatiev, S.V. Kirillov, V.M. Novikov, A.V. Puzirev
Fusion Science and Technology | Volume 20 | Number 4 | December 1991 | Pages 620-626
Advanced Fission Reactors | doi.org/10.13182/FST91-A11946908
Articles are hosted by Taylor and Francis Online.
In providing nuclear power plant safety the priority is currently given to reactor self-protection by means of inherent features and passive means. The problems of self-protection for molten-salt fuel reactor (MSR) and molten-salt cooled coated particle fuel graphite reactor (HTMSR) have been studied. The following ways to reach a high level of self-protection are investigated: a) high level of natural circulation (100% for MSR and 10% for HTMSR); b) integrated layout; c) minimization of reactivity changes during fuel burn-up; d) decrease of maximum operative temperature. Calculations of transient processes during heavy accidents without scram are presented. It is shown that maximum temperatures of the primary circuit materials do not reach critical values under such accidents. For the high hypothetical case with the damage of the reactor and guard vessels in MSR the fission products yield from the fuel salt into gas-phase of MSR containment is investigated.