ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Quanwen Wu, Wenhua Luo, Xiayan Yan, Jingwen Ba, Zhenhua Zheng, Zhiyong Huang, Jinchun Bao, Danling Dai, Daqiao Meng
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 50-58
Technical Note | doi.org/10.1080/15361055.2017.1368335
Articles are hosted by Taylor and Francis Online.
Tritium must be strictly defended in tritium systems because of its permeability and radioactivity. Detritiation devices are required in tritium systems, such as the glove box detritiation system, the vent detritiation system, and the air detritiation system in ITER. The method of catalytic oxidation and adsorption is widely used for air detritiation, and metal gas getter is used in glove box detritiation. Here, a Ce-based oxide-loaded honeycomb catalyst is prepared as a multifunctional detritiation catalyst. The properties of the Ce-based oxide and catalyst are characterized by X-ray diffraction, N2-adsorption/desorption (Brunauer-Emmet-Teller method), and H2 temperature programmed reduction. The catalytic performance is tested under both O2-lean and O2-rich atmospheres. Results indicate that the Pt/Ce0.7Zr0.3O2 honeycomb catalyst fully oxidizes H2 at room temperature with high space velocity (3.2 × 104 h−1) when oxygen is sufficient. When oxygen is deficient, H2 is also fully oxidized by the catalyst at 200°C, with the oxygen supplying from the support. A detritiation test using tritium as reactant is also carried out, and the results verify the feasibility for detritiation application. An improved detritiation reactor is designed and built based on the multifunctional catalyst.