ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chang An Chen, Xin Zhou, Zhanlei Wang, Bo Wang, Lingbo Liu, Xin Xiang, Yong Yao, Jiangfeng Song
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 34-42
Technical Note | doi.org/10.1080/15361055.2017.1368333
Articles are hosted by Taylor and Francis Online.
The Chinese (CN) Helium Cooled Ceramic Breeding (HCCB) Test Blanket Module (TBM) (CN HCCB TBM) set with its ancillary systems will demonstrate the feasibility of in-pile tritium production/breeding in ITER for fuel self-sufficiency and high-grade fusion energy conversion to heat and extraction for a future magnetic confined fusion reactor. Tritium release in some major components of the recently designed TBM systems through permeation and natural leakage was estimated with simple diffusion/permeation and leak rate calculation models. Results showed that because of the tritium permeation barrier coating for tritium confinement in some tritium containments, total tritium release to the environment by permeation in the CN HCCB TBM and ancillary systems will be kept well below 2 Ci/full-power day. However, tritium release through natural leakage from components can be neglected compared with permeation. Equipped with ITER tritium safety guarantee facilities like the tritium monitoring and detritiation systems, tritium release from CN TBM system–caused radiological safety issues will be well controlled.