ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Chang An Chen, Xin Zhou, Zhanlei Wang, Bo Wang, Lingbo Liu, Xin Xiang, Yong Yao, Jiangfeng Song
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 34-42
Technical Note | doi.org/10.1080/15361055.2017.1368333
Articles are hosted by Taylor and Francis Online.
The Chinese (CN) Helium Cooled Ceramic Breeding (HCCB) Test Blanket Module (TBM) (CN HCCB TBM) set with its ancillary systems will demonstrate the feasibility of in-pile tritium production/breeding in ITER for fuel self-sufficiency and high-grade fusion energy conversion to heat and extraction for a future magnetic confined fusion reactor. Tritium release in some major components of the recently designed TBM systems through permeation and natural leakage was estimated with simple diffusion/permeation and leak rate calculation models. Results showed that because of the tritium permeation barrier coating for tritium confinement in some tritium containments, total tritium release to the environment by permeation in the CN HCCB TBM and ancillary systems will be kept well below 2 Ci/full-power day. However, tritium release through natural leakage from components can be neglected compared with permeation. Equipped with ITER tritium safety guarantee facilities like the tritium monitoring and detritiation systems, tritium release from CN TBM system–caused radiological safety issues will be well controlled.