ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
T. E. Gebhart, S. K. Combs, L. R. Baylor
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 25-33
Technical Paper | doi.org/10.1080/15361055.2017.1372683
Articles are hosted by Taylor and Francis Online.
Future large tokamaks, such as ITER, will require a reliable technique for rapid energy dissipation to mitigate harmful effects from disruptions. Two main methods developed for disruption mitigation are massive gas injection and shattered pellet injection (SPI). Argon and neon are favorable materials for both injection methods. When launching pellets with SPI, it has proven difficult to launch intact pellets of pure argon and/or neon owing to their high material strength at cryogenic temperatures. In this work, we compare two methods of launching relatively high-Z pellets. An electrothermal plasma source is an experimental alternative to the fast opening, high-pressure, gas valve. The electrothermal source was used to launch Lexan™ pellets with approximately the same size and mass of comparable mixed gas (D2 and Ne) cryogenic pellets launched by gas guns. We describe comparisons of achieved pellet velocities, energy efficiencies of each system, and the implications of implementing each respective method on an operating tokamak.