ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Peter Franzen, Juliusz Sielanko, Hubert Peter Lambert De Esch, Eckehart Speth, Bernd Heinemann, Rudolph Riedl
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 776-790
Technical Paper | doi.org/10.13182/FST03-A415
Articles are hosted by Taylor and Francis Online.
An alternative residual ion removal concept for the ITER neutral beam system is presented. It consists of magnetic deflection of the residual ions to in-line ion dumps. The target plates are hit from one side and form a 0.5-m-wide opening to the beam. First calculations show that for the most severe case of a 3-mrad beam, the maximum power load can be kept below 15 MW/m2, using a different horizontal focal length. However, this different beamlet optic increases the beam peak power density changing the plasma deposition profile and increasing the shine-through power during low-density operation. First calculations showed that using a passive screening, the additional stray field created by the magnet could be kept below the required 1 gauss within the neutralizer. The overall beamline transmission increases by ~10% (i.e., an additional 1.7-MW injected power for each beamline for a 3-mrad beam) due to the open structure of the magnet and the ion dumps. Furthermore, the concept offers a larger operating window regarding beam alignment, divergence, steering, and transmission, and it avoids creating accelerated secondary electrons.